File Revision Date:

May 5, 2005

Data Set Description:

PI: P. Werle

Instrument: UV Spectrometer (Bentham DTM300 system)

Site(s): Garmisch, Germany (47.48 N, 11.07 E, 730m) since April 1994

Zugspitze, Germany (47.42 N, 10.98 E, 2962 m) since July 1995

Measurement Quantities:

Spectral irradiance on a horizontal surface (cosine weighted) of UV 280-420 nm at 0.25 nm resolution. Scans are taken approximately every ten minutes. Spectra of global and direct horizontal irradiance are taken alternately.

Scans are from sunrise - approx. 1 hour to sunset + approx. 1 hour.

Contact Information:

Name: P. Werle

Address: Forschungszentrum Karlsruhe, Institute for Meteorology and Climate Research

Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany

Phone: +49 (0)8821 183-170 FAX: +49 (0)8821 183-296 Email: Peter.Werle@imk.fzk.de

Web-Page: http://imk-ifu.fzk.de/photonics/online.html

Reference Articles:

Seckmeyer G. and Bernhard G., "Cosine error correction of spectral UV irradiances", in Atmosheric Radiation, edited by K. Stamnes, SPIE Proc. Int. Soc. Opt. Eng., 2049, 140-151,1993

Seckmeyer et al., "High Accuracy Spectroradiometry of Solar UV Radiation", Metrologia 32, 1996, pp 697-700

Bernhard G. and Seckmeyer G., "New Entrance Optics for Solar Spectral UV Measurements", Photochemistry and Photobiology, 1997, 65(6): 923-930

Mayer B. and Seckmeyer G., "Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results", Journal of Geophysical Research, Vol. 102, No. D7, pages 8755-8767, april 20, 1997

Bernhard G. and Seckmeyer G., "Uncertainty of measurements of spectral solar UV irradiance", Journal of Geophysical Research, Vol. 104, No. D12, pages 14,321-14,345, june 27, 1999

Instrument Description:

Bentham DTM300. NDSC standard (2400 g/mm, 0.6 nm fwhm)

QA/QC Description:

Quality assurance and quality control of spectral irradiance data measured at the stations "Garmisch" and "Zugspitze"

- 1. Data acquisition
- a) Daily system check (spectroradiometer, calibration unit and ancillary instruments):
- * Check if running correctly.
- * Online comparison to a RBM.
- * Check of time and date of the system.
- * Cleaning entrance optic if necessary (routinely only once a week at Zugspitze).
- * Temperature stability check of instrument environment. (only weekly at Zugspitze).
- b) Absolute calibration:
- * Calibration of a working and control standard once every 3 to 4 years using a set of three 1000 W lamps from PTB as reference standard.
- * Determining the spectral sensitivity of the spectroradiometer using a working standard once or twice every two weeks ("absolute calibration of the system").
- * Aging-check of the working standard (100 W, halogen) using a control standard (100 W, halogen) twice a year ("lamp shift").
- c) Wavelength alignment:
- * Daily coarse check using Fraunhofer lines (Ca).
- * Checking twice a year using a HgNe penray lamp.
- d) Measuring the slit function once a year using a HeCd-Laser.
- e) Instrument intercomparison:
- * Once every two to three years using a mobile spectroradiometer system.
- * Using this mobile system to check the stationary systems.
- f) Using ancillary instruments:
- * RB-meter measures erythemally weighted irradiance every minute for checking the spectroradiometer data
- * Pyranometer measures total global irradiance every minute to decide if it has clear sky or not
- * Pyrheliometer measures total direct irradiance every minute to decide if it has direct sun or not
- * Luxmeter measures illuminance every minute to decide if it has clear sky or not
- * Sun-tracker for direct irradiance measurements
- * Cloud camera takes pictures every 10 minutes for deriving cloud cover and cloud form
- 2. Data evaluation
- a) Monthly:
- * Global irradiance: cosine correction, linearity correction and review of diurnal variation of irradiance at 400 nm, ozone column and comparison of erythemally weighted spectra to RBM.

- * Direct irradiance: linearity correction, diurnal variation at 400 nm, aerosol optical depth and ozone column.
- b) Yearly (global and direct irradiance):
- * Wavelength shift correction using modelled clear sky spectra.
- * Lamp shift correction using check of working standard.
- * Comparison of resulting data to modelled spectra.
- * Determining aerosol optical depth and ozone column again after the correction procedures.

Expected Precision/Accuracy of Instrument:

+/- 6.7% to 10.3% (+/- 2 Sigma) at 400 nm depending on atmospheric conditions,

+/- 9.7% to 15.5% (+/- 2 Sigma) at 300 nm depending on atmospheric conditions,

+/- 7.5% (+/- 2 Sigma) for erythemally weighted irradiance,

see Bernhard et al., 1999.

Instrument History:

Dates and description of significant changes in instrument or algorithm

middle of 1999 Zugspitze: sun tracker broken.

Feb 2001 Garmisch: driver and amplifier electronics exchanged.

August 2001 Garmisch: sun tracker broken.

January 2001 Zugpitze: station is temporay deactivated

April 2002 Garmisch: new sun tracker installed.

November 2002 Garmisch: station is temporay deactivated

April 2003 Zugspitze: station is reactivated

April 2004 Zugspitze: new online software for ancillary instruments installed